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PHENOMENOLOGICAL LOSS EQUIVALENCE METHOD FOR

PLANAR QUASI-TEM TRANSMISSION LINES USING A

THIN NORMAL CONDUCTOR OR SUPERCONDUCTOR

This technical report presents a simple and practical method for the conductor

loss calculation over a wide range of field penetration which can be applied to both

normal-state and superconducting transmission lines. This phenomenological loss

equivalence method is based on the observation of the conduction current distribution

as the quasi-static field of a quasi-TEM transmission line penetrates into the conductor.

In this method, a planar quasi-TEM transmission line, having a finite conductor

thickness on the order of the penetraticn depth, is approximated by an equivalent single

strip which is assumed to have the same conductor loss as the transmission line. Then,

the distributed internal impedance of the transmission line is calculated from the

equivalent single strip and all the propagation characteristics are obtained by

incorporating the internal impedance into the circuit model of transmission line.

The calculated results for microstrip lines and coplanar ,,.. guides using

normal conductors and superconductors agree very well with the data obtained using

the finite element method, the Monte-Carlo method, and experimental measurements.

Because of the calculation simplicity, this method is very suitable for computer-aided

design of monolithic microwave and millimeter-wave integrated circuits.
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Chapter 1

Introduction

High speed and high degrees of integration in modern integrated circuits,

especially in monolithic microwave integrated circuits, require very narrow and thin

metal interconnection lines. High-speed electro-optic devices, such as traveling-wave

optical modulators, use very narrow and thin electrodes for a very wide bandwidth. In

the very thin normal conductor line, the field penetration depth, which decreases with

increasing frequency due to the skin-effect, can be comparable with the line thickness

even at high frequency. Therefore, the field penetration effect should be taken into

account for the wideband characterization of the lines. On the other hand,

superconductors have very high conductivities and can be used to reduce the conductor

losses of the lines with a small cross-section[l]. However, if the thickness or the

width of the superconducting line is small enough to let the field penetrate deep into the

line, the conductor loss will be increased and the merit of the ah 1most non-dispersive

transmission characteristic will be lost.

Therefore, for both small normal-conducting and superconducting lines, the

conductor loss must be characterized in a wide field-penetration range by taking the

field penetration effect into consideration. DC calculation at complete penetration and

the incremental inductance method at shallow penetration[2], however, cannot be used

directly in the wide range of field penetration. The DC calculation assumes a uniform

I
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current distribution inside the conductor at the complete field penetration. On the other

hand, the incremental inductance method is valid only if the conductor thickness is

several times the penetration depth. Therefore, in order to consider the penetration

effect, several loss analyses have been carried out for microstrip-like structures. A

variational formulation of the penetration-effect problem[3] was used to calculate the

conductor loss of a single thin strip which has a rectangular cross section without a

substrate and a ground plane. The finite element method was also applied to

microstrip-like transmission line structures to calculate the resistance and reactance[4],

[5]. However, these methods are not appropriate for computer-aided-design

implementation, since they require extensive formulations and numerical computations.

A simple modification of the penetration-effect resistance[6] is valid only for a very thin

and wide strip.

This technical report presents a simple and practical method for the conductor loss

calculation in a wide range of field penetration[7], which can be applied to normal-

state[S and superconducting transmission lines[9]. This phenomenological loss

equivalence method(PEM) is based on the observation of the current distribution

change as the quasi-static field of a quasi-TEM transmission line penetrates more irto

the conductor. In this method, a planar quasi-TEM transmission line, having a finite

conductor thickness on the order of the penetration depth, is approximated by an

equivalent single strip with finite thickness in which current distribution is assumed to

be uniform on the strip surface. The width and thickness of the equivalent strip are

obtained from the cross-sectional geometry of the original line, while the conducting

material is the same as that of the original line. Since the geometry of the equivalent

strip obtained is material-independent, it can be used for any normal-state or
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superconducting line by substituting the conducting material. Therefore, the distributed

internal impedance of the transmission line can be approximately calculated from the

equivalent single strip and all the propagation characteristics can be obtained by

incorporating the internal impedance into the circuit model of the transmission line.



Chapter 2

Penetration of Electromagnetic Fields into a Good Conductor

2.1. Introduction

A normal-state conductor has the skin depth (5) which is inversely proportional

to the square root of frequency. Then, the field penetrates deeper at lower frequency

and the current flowing inside the conductor becomes more uniform. On the other

hand, a superconductor has an almost constant penetration depth (X) at a given

temperature below the critical temperature (Tc) and the field penetration remains almost

unchanged with the frequency. Based on the two-fluid model[ 101, a superconductor

can be described as a corductor which has the complex conductivity (U = an + j Ys,

where an and ays are the normal and super-conductivities, respectively) depending on

the temperature and the frequency. Therefore, by assuming a generalized complex

conductivity (a = Or + j ai), we can treat both the normal and super-conductors with an

identical formulation.

At very high frequencies, appreciable deviations from the local conductivity

modeling can occur due to so-called anomalous effect[ I ll in which mean free-path of

the normal electrons can become comparable to the penetration depth or the conductor

thickness. Therefore, the relation between the conduction current and the electric field

will have a non-local form[ 121 which integrates all the contribution of nearby electrons.

This effect exists in both normal conductor and superconductor and results in a large

4
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increase in conductor loss. Although this effect is not included in this

phenomenological loss equivalence method, the local conductivity modeling can be

used in most of practical situations with a reasonable agreement since the anomalous

effect occurs only at very high frequencies.

2.2. Planewave propagation into a good conducting medium

In this section, we consider the field penetration of a plane wave into a

conducting medium with finite conductivity as shown in Fig.2.1(a). For a

simplification, we assume a normal incidence in infinitely thick conductor. However,

in any incidence angle, the field travels alrr )st in normal direction inside the conductor.

That is because the wave vector inside a good conductor is very larger than in any

dielectric material and hence, the small tangential wave vector of the incident wave does

not affect the normal component of the large wave vector inside the conductor. This

characteristic can be used very effectively to describe the field penetration effect at a

given surface geometry using the surface impedance obtained for the normal planewave

incidence.

Electric and magnetic fields inside the conductor can be expressed by Helmholtz

equations obtained from Maxwell's equations using time-harmonic convention of eJ

as follow.

2 2
(V -j I Oa+w W c)E=O

2 2 (2.1)
(V -jW(olc+w Li)Hi=O
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(E *j) Conducting Medium

Plancwave

a)

R s

0-

Mean depth
b)

Fig. 2. 1. (a) Penet-ration of a planewave into a good conductor aind

(b) the equivalent lumped circuit
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where c, i, and a are the permitivity, the permeability, and the conductivity of the

conductor. By inserting the phaser notation (e-JkX) of planewave solution into the

above Helmholtz equations, we can get the following dispersion relation.

2 2 a
k PE.( I -j- ) (2.2)

Since conduction current of a good conductor is much larger than the displacement

current (i.e. a >> o c), the above dispersion relation can be reduced simply as

k -ijol.t (2.3)

where the positive and negative signs are for the waves traveling positive and negative

x directions, respectively. Therefore, the incident fields decay exponentially from the

conductor surface due to the imaginary part of k and oscillate due to the real part of k.

The depth of penetration (A) is defined by the depth at which the fields (or the

conduction current density) is attenuated by Ile from the surface value. Therefore, the

depth of penetration can be expressed using the imaginary part of k.

A =- (_'2 -,)
- Im(k)

The characteristic impedance of the conducting medium can be obtained from

Maxwell's equation and the dispersion relation (2.3) as follows.

O T-- = (2.5)k

Now, if we define the surface impedance of a conductor (Zs) by the ratio of the

tangential electric field (Et) to the magnetic field (Ht) at the conductor surface, the
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surface impedance represents the input impedance of the conductor seen at the

conductor surface.

zs = E- = Z i, (2.6)

s-H,

If the conducting medium is infinitely thick in the propagation direction, the input

impedance will be the characteristic impedance of the conductor because there is no

reflected wave traveling in negative x direction inside the conductor. Therefore,

Zs = R s + j co Li, = VTU1,(1,7)
(p7

The surface impedance consists of the real and imaginary parts, which

associates respectively with the ohmic resistance (Rs) and the internal inductance per

square area (Lis) due to the field penetration. The ohmic resistance comes from the

finite conduction current flowing inside the conductor by the penetrated eiectric field.

The internal magnetic flux inside the conductor results in the internal inductance which

is additional to the external inductance (L) due to the magnetic flux outside the

conductor. The concept of the internal impedance is illustrated in Fig. 2. 1(b) using

circuit elements, where resistance and internal inductance, due to the finite conduction

current and the magnetic flux penetration, are shown inside the conductor and parallel

capacitance representing small displacement current is neglected inside the conductor.

2.2.1. Field penetration into a normal conductor

For a normal-state conductor, the conductivity is pure real and hence, the real

and imaginary parts of the surface impedance per square area are the same.
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ZS= (l1+j) o _(+ j

(2.8)

-17t f9 G.

where the quantity 6, called the skin depth of the ncrmal conductor, has the significance

of the penetration depth defined by (2.4). The surface resistance and the internal

inductance per square area can be written in terms of the skin depth as follow.

Rs= Re (ZS) I

Im( Z) 
(2.9)

Lis =

The above equations show that the resistance and the internal inductance are

those of layers whose thicknesses are equal to the skin depth and one half of the skin

depth, respectively. In other word, the mean depths of the surface resistance and the

internal inductance of a normal conductor are respectively the skin depth and one half of

that. A significance of the field penetration effects in normal conductors is the skin

depth which is inversely proportional to the square root of frequency. Therefore, the

pectratior effect fcr finite conductor thickness is significant at low frequencies and the

field distribution inside the conductor finally becomes uniform at DC.

2.2.2. Field penetration into a superconductor

Although the conductivity modeling of superconductor, especially for high-Tc

superconductors have not been established well, two-fluid model[ 101 has been used

generally below the bandgaps of the superconductors because of its simplicity. Mattis

and Bardeen derived a more realistic result for the conductivity using the BCS weak-
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coupling theory at frequencies approaching the bandgap frequency[ Il]. While the

Mattis - Bardeen theory describes the conductivity even above the bandgap frequency

and can be used for this phenomenological loss equivalence method, the two-fluid

model has been used throughout this technical report because of its simplicity and

reasonable description of the superconductivity below the bandgap.

The two-fluid model postulates that a fraction of the conduction electrons is in

the lowest-energy (or superconducting) state with the remainder in the excited (or

normal) state. Using London equation and low frequency assumption[lO], the

complex conductivity can be expressed as the sum of the contributions from normal

current (for the quasi-particles) and supercurrent (for the Cooper pairs):

G = rn - Ys

1 - (2.10)

On = nn - , _Js-

n nfl \TC/X 2

where Unn, X, and .i are the normal conductivity at the critical temperature (Tc), the

penetration depth at 0 K, and the permeability of the superconductor. Here 3 is an

empirical parameter for a given superconductor such that I _< [3 <_ 4. The imaginary part

(as) of the conductivity associated with the supercurrent is much larger than the real

part (an) associated with the normal current below the critical temperat!'re. Fig. 2.2

shows the heuristic equivalent model of a superconductor which is a parallel connection

of a normal resistor and an ideal inductor associated with the normal current and the

supercurrents, respectively.



J total

js Jns

Fig. 2. 2. Equivalent circuit representation of

a superconductor in two-fluid model

Since Us >> Gn for a superconductor below the Tc, the propagation constant (k)

in (2.3) is almost pure imaginary and then, the incident fields only decay exponentially

from the superconductor surface. The penetration depth (k) of a superconductor can be

approximately calculated below the Tc using (2.4) and (2.10) as follows.

(2.11

The penetration depth is almost constant with the frequency and only depends on the

temperature for a given superconductor. That is because the dominant supercurrent is

inversely proportional to the frequency of the fields and hence, the complex

propagation constant in dispersion relation (2.3) is almost frequency-independent. This

is a very important characteristic of superconductors as well as their high supercurrent.
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The surface impedance of a superconductor can be obtained using (2.7) and

(2.10) as follows.

(Yn +jO
ASCr j(52 (2.12)

Rs = Re (Z s ) = 2 (2.13)2

2 X crs

Im(ZS 
(2.14)

CO

The ohmic resistance is very small below the T. and the mean depth of the internal

inductance is the penetration depth (X) while the mean depth of a normal conductor is

one half of the skin depth (6/2). Since superconductors have very small penetration

depths which are only temperature-dependent below the bandgap frequency, the

penetration effect is important only for very thin structures or around the critical

temperatures.

2.3. Surface impedance of a conducting plane with finite thickness

If the conducting plane has finite thickness, the fields inside the conductor will

be reflected back and forth between the two conductor surfaces. As mentioned in the

previous sections, the field inside the conductor propagates in the normal direction of

the conductor surface for any incidence angle. Therefore, the conducting plane behaves

as a highly lossy transmission line terminated by the air on both ends in the normal
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direction. Since good conductors have much smaller characteristic impedance than the

air as shown in (2.5), we can assume the both ends of the transmission line are open.

Therefore, the surface impedance of a conducting plane with finite thickness (t) can be

expressed using a formula for transmission line as
Z
t

=SR +j0oLi=Zscoth(-jkt)

2_t (2.15)
coth[(1+j) 2 "

The last coth term of the surface impedance shows a correction factor for the

finite thickness due to the multiple reflections between the conductor surfaces. The

surface impedance can be used for any incidence angle because of the normal

propagation of the field inside the conductor. Therefore, if the field distribution on the

conductor surface is obtained by assuming the perfect conductor, each surface of the

conductor can be approximately replaced by the corresponding surface impedance.

Then, the imperfect conductor effect, such as the conductor loss, can be readily

calculated. The conductor thickness is not necessarily infinite if we use the surface

impedance (2.15) for finite conductor thickness. This can be used effectively to

characterize conducting planes with finite thickness comparable to the penetration

depth. For a normal conductor, this effect is significant at low frequencies because the

skin depth increases with decreasing frequency. Since superconductors have very

shallow penetration depths below the critical temperatures, this effect takes place

normaiiy in very thin and narrow superconductors.



Chapter 3

Incremental Inductance Rule and Geometric Factor

3.1. Introduction

As discussed in previous chapters, the field penetration into an imperfect normal

conductor or superconductor results in finite surface resistance and internal inductance.

The surface resistance dissipates the field energy through the ohmic loss and the small

internal inductance is added to the external inductance of the perfectly conducting

structure. Now, the total internal impedance (Zi) of a given structure, due to the field

penetration, can be obtained by summing up all the contribution of the internal

impedance coming from the entire exposed conductor surface. The total internal

impedance can be calculated using so-called incremental inductance rule[2] which

calculates the internal inductance by the increment of the total inductance caused by the

penetration of the magnetic flux. The incremental inductance rule is entirely based on

inductance calculation and valid essentially if the penetration depth is very shallow

compared to the conductor thickness and radius of curvature. By the way, this rule can

be modified for deep penetration if we use the surface impedance defined in (2.15) for

finite conductor thickness.

In the shallow penetration, the total internal impedance can be expressed using

the surface impedance and the geometric factor which depend only on the material

properties and the surface geometry, respectively. Therefore, a given structure can be

14
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substituted by any conducting surface which has the same geometric factor and the

same material properties. This idea has been used very effectively in phenomenological

loss equivalence method, to be discussed in next chapter, where a given conductor

geometry is effectively represented by a single equivalent strip.

3.2. Incremental inductance rule

The internal inductance is caused by the penetration of the magnetic flux into the

conductor. This internal magnetic flux has the mean depths of 5/2 and X for normal

conductors and superconductors, respectively, as shown in (2.9) and (2.14).

Therefore, the internal inductance (Lis) is equivalent to the increment of the external

inductance caused by receding the conductor surface to the mean depth as shown

below.

Li,= ( L)- for normal conductors (3.1)

= (- for superconductors (3.2)

where n is the normal recession of the conductor surface. The internal reactance (jcOLis)

is related to the internal resistance (Rs) by the surface impedance given in (2.7).

Therefore, the internal impedance of a conductor surface can be expressed using the

surface impedance (Zs) and the increment of the external impedance (DL/an) on the

conductor surface. Finally, the total internal impedance (Zi) can be obtained by

summing up all the internal impedance on each exposed conductor surface as follows.

Zi = R + j o Li -- L Zsm (3.3)
m Pm annnmI
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3.3. Concept of the geometric factor

If each conductor surface has the same surface impedance, the above total internal

impedance can be expressed using the surface impedance and the geometric factor G

shown below.

Zi a= Z s = G Z s  (3.4)

G I Km (3.5)

where G is defined as a geometric factor because it can be obtained only from the

conductor geometry. This implies that a given structure has a unique geometric factor

and different structures having the same geometric factor can be said equivalent to each

other in terms of internal impedance at shallow penetration. This implication is very

important for the phenomenological loss equivalent method to be explained in next

chapter.

Since the external magnetic flux is proportional to the surface current density,

the increment of the external inductance is associated with the distribution of current

density on each conductor surface. For instance, if the current density is higher on a

surface, the increment of the external inductance will be hi-gher on the surface.

Therefore, the geometric factor G represents the surface current distribution of a given

geometry. If the surface current concentrates more in a small surface area, the

increment of the external inductance on the surface (or G) will be higher and then, the

internal impedance and the conductor loss will be increased. Therefore, in order to
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reduce the conductor loss, we should spread out the surface current equally on the

entire conductor surface and hence, decrease the geometric factor.

3.4. Calculation of the geometric factor for quasi-TEM lines

The geometric factor of a structure can be obtained readily if we know the

external inductance for perfect conductor case using full-wave analyses or empirical

formulas. For quasi-TEM transmission lines, such as a microstrip, a coplanar

waveguide, and a coplanar strip, the geometric factors can be calculated using quasi-

static surface current distributions on the cross-sectional surfaces of the lines. If

empirical formulas of the effective index and the characteristic impedance are given for

a quasi-TEM transmission line, the geometric factor can be readily calculated by

obtaining the derivative of the external inductance as shown in (3.5).

In many publications[131,[14], the incremental inductance method has been

applied to the quasi-TEM lines to obtain the conductor losses based on several empirical

formulas. However, their published expressions for the conductor losses are not

consistent and, moreover, some expressions are based on inaccurate formulas or seem

to have typographical errors. Therefore, in order to obtain more accurate and reliable

geometric factors for typical quasi-TEM lines, the geometric factors are derived based

on their empirical formulas currently available and very accurate in the given ranges.

3.4.1. Geometric factor of a microstrip line

For the microstrip line with finite strip thickness shown in Fig. 3. 1, simple and

accurate closed form expressions of the effective index (Ereff) and the characteristic

impedance (Z0) are empirically obtained for the case of ideal conductor' 151. Although
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-6t

*.6W -6W

Er 8h -8t+6h h

tg

Fig. 3. 1. Recession of conducting walls of a microstrip line

for the calculation of the geometric factor

the expressions do not describe the dispersion, the expressions are the most accurate

formulas current available in a wide range of aspect ratio ( 0. 1 < W/h _< 20 ) and strip

thickness ( tAh < 0.2 ). The dispersion also can be incorporated into the quasi-TEM

expressions using empirical dispersion equations[ 16]. The formulas are shown below

and used to calculate the geometric factor.

60 I 8 0.5WWh I
zo= hi h)

Sreff /h (3.6)

I2 Lh + 1.393 +0.667 In h .444 .h.

where
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WW 1.2 + 1 +In- <--W
We t ft 2n (3.7)

h W 1.25 t 2h wTh-+ 1n + In- h -

and J Er.+ jj 1 1 /2 W2
21/

r"r+ E 1 - 12 W C, w
+I+ 1+, 04 C, >

2 2 Wh

in which

4- .6 I-wI-h
h

The above formulas can be transformed into formulas of the distributed

capacitance (C) and external inductance (Lo). The distributed external inductance has

been obtained using the characteristic impedance of the microstrip with substrate filled

with air (Zl and the free-space light velocity (c) since the dielectric substrate does not

affect the external magnetic flux and hence, the external inductance. Therefore,

a
LO= - - (3.9)c

The geometric factor has been calculated by summing up all the incremental

inductances coming from the recession of all conducting walls shown in Fig. 3.1. For

a simplification we assumed the same conductor for the strip and the ground plane.
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The geometric factor shown below has beea obtained from the derivative of the external

inductance and some algebraic manipulations.

G I-- _L I oL - L - 3L oL (3.10)
G = -- + ground

0t stripplane

W 2

1 A 32

h 32+ We-

zo0.667 We (3.11)20 A We 0.6 --f-

2 120= h- h- we+ 1.444 }rf(>i

h 4

where

I +W-h 1 + 1.5ln 4EW+ t-W
We 7 t W /h2

I + h-I 1 + 1.5- In -2h--t , > I

3.4.2. Geometric factor of a coplanar waveguide

For the coplanar waveguide shown in Fig.3.2, quasi-static analysis using

conformal mapping[ 171 has been usually used to obtain the closed f, rm expressions of

the effective index and the characteristic impedance. The analysis holds oniy for

infinite substrates and infinitesimally thin conductors. A correction for the finite

conductor thickness[ 141 has been carried out based on the concept of increase in
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SI I I

III I(1) ,,j (1) (1)

(1) = -(t

(2)= -t + 5h

(3)= 8W

(4) =6W - 8 (2S)

Fig. 3. 2. Recession of conducting walls of a coplanar waveguide

for the calculation of the geometric factor

microstrip width due to the finite thickness shown in (3.7). Effect of the finite

substrate thickness is also included in the following closed form expression of the

effective index[141 by curve-fitting numerical results[181. The conformal mapping

result and the corrections are summarized in the following expressions of the effective

index and the characteristic impedance.

Z0- 30it K' k,) (3.12)
K (k
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0.7 t
rcfEre- (3.13)

reff e re K' k +0.7 t1
K'(k)

where

w +1 tanh 1.785 log ( + 1.75

Ere- (3.14)
2 + W T 0.04 - 0.7 k+ 0.01 1- 0. 1 )(0.25 +k)

S k _Se

-+2W ' = S e +2W C,

Se=S+A , We=W-A

A 1.25 t I+In
?tt

and K ( k) and K'( k )[ K 1- k2)] are the complete elliptic integral of the first

kind and that with complementary modular, respectively.

Now, the geometric factor can be obtained in the same way as that of the

microstrip mentioned in previous section. In order to calculate the derivative of the

external inductance, the ratio of the elliptic integrals (K'/K) is expressed by simple

algebraic formulas[ 191. The recession of conducting walls are shown in Fig. 3.2 and

added to calculate the following geometric factor.

a L +aL + L + a_ L__aL

a t a h (1) t (2) a-W (3) aW aS (J)

(3.15)
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1+1.25[ t 4n S]

(WW (3.16)

1 1.25t( 4T S_

where (ke 0.0 ke 0.707

2 , ke 2

Ik, K'I ke) ,2 0.707<ke_< 1.0

3.4.3. Geometric factor of a coplanar strip

Since coplanar strip and coplanar waveguide configurations are complementary

to each other, closed form expressions of effective index and characteristic impedance

for the coplanar strip can be obtained by interchanging conducting and air-dielectric

walls of the coplanar waveguide. Therefore, following final expressions[ 141 for the

coplanar strip are very similar to those for the coplanar waveguide except interchanges

of W and S.

1207r K~ke}
Zo Eref K k) (3.17)

1.41t
Creff=Ere( Ere- ) (3.18)

" ') 1.4 t
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i I! S -- W
I ! I

(1) , (1)

(1) =-St

(2)=- 5t + h

(3) 5W

(4) =-W + (2S)

Fig. 3. 3. Recession of conducting walls of a coplanar strip

for the calculation of the geometric factor

where

Se=S-A , WP-W+A

15[ t

and ere, k, c, K, and K' are shown in previous section for coplanar waveguide.

The following geometric factor has been obtained from the recession ot

conducting walls of the coplanar strip shown in Fig. 3.3.
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G a- a + - + + -- +2

-t () at (2) aw ( 3 aw a s (4)

(3.19)
1+ 125[ t +I4nW ]

4 (1+2 
(3.20)TES S-2

1 + 125t I +I W
n St

where

[IK(ko)t p

a PidiK' ki)s

and P is defined in previous section.



Chapter 4

Phenomenological Loss Equivalence Method for Quasi-TEM

Transmission Lines with Thin Conductors

4.1. Introduction

For a planar quasi-TEM transmission line such as a microstrip line shown in

Fig. 4.1(a), electromagnetic fields penetrate into the imperfect conductors while

traveling along the axial direction. The field penetrations result in the resistance (R) and

internal inductance (Li) which are distributed in the axial direction in series to the

external inductance (L) for ideal conductor. The distributed internal impedance (Zi = R

+ j*Li) makes the conductor loss and the dispersion of the transmission lines, which

degrade the transmission characteristics. Therefore, the transmission lines must be

characterized in a wide range of field penetration. Especially, a wideband transmission

line using normal conductor must be analyzed in a wide penetration range since the

penetration depth is proportional to the inverse square root of frequency.

If the penetration depth is very shallow compared to the conductor thickness,

the surface current distribution will be the same as that of the ideal microstrip and then,

we can apply the incremental inductance rule discussed in the previous section, to the

structure. On the other hand. ,f the current completely penetrates into the conductor,

the current distribution will be uniform inside the conductor and the distributed internal

impedance can be readily calculated. Now, if the penetration is moderate, the current

26
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distribution becomes nonuniform on the surface and almost exponentially decays from

the surface into the conductor. Therefore, the incremental inductance method and the

calculation at uniform distribution cannot be used for the moderate penetration.

In order to calculate the internal impedance of a iransmissioa line, the current

distribution must be known throughout the entire conductor. However, full-wave

analysis and much of computation are needed in order to exactly calculate the whole

current distribution. The idea of this phenomenological loss equivalence method is to

phenomenologically transform a given quasi-TEM transmission line into an

intermediate state of a single equivalent strip based on the discussion in the previous

chapters and then, analyze the equivalent strip using the surface impedance for finite

conductor thickness shown in (2.15).

4.2. Concept of the phenomenological equivalence

This method can be explained phenomenologically based on the geometric

factor and the normal propagation of penetrated fields inside conductor discussed in

Sections 3.3 and 2.2, respectively. For a given quasi-TEM line such as a microstrip

line shown in Fig. 4.1 (a), the conduction current is distributed just on the conductor

surface at very shallow penetration. This is the case of a normal conductor at high

frequencies or a superconductor of small penetration depth. Therefore, the conduction

current can be said to be distributed just on entire circumference of the cross-sectional

geometry. Since the internal regions of the conductor do not affect the field

distributions at the shallow penetration, we can assume the conductors are hollow.

This means the entire circumference can be unfolded and the nonuniform current

distribution can be displayed in a straight line as shown in Fig. 4. 1(b). Based on the
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Fig. 4. 1. Cross-sectional geometries and current distributions of

(a) a microstrip line, (b) the unfolded line, and (c) the equivalent strip
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same geometric factor mentioned in the previous chapter, the nonuniform current

distribution in the straight line can be represented effectively by a uniform current

distribution on a single strip extended to an equivalent width (We) as shown in

Fig.4.1(c).

Now, at deeper penetration shown using the current distribution of the

microstrip in Fig. 4.1, the fields penetrate in normal direction from each conductor

surface of the microstrip line. That is the normal direction in the unfolded straight line

(vertical direction in Fig. 4.1(b)). The current penetrated inside the conductor

therefore, can be displayed in the vertical direction. At the deep penetration, fields

penetrated from one conductor face reach to the othc face in normal direction and

bounce back and forth between the two faces. Therefore, the field distribution between

the two faces has almost the same form as that in a conducting plane with finite

thickness shown in Section 2.3. Since the field distribution between every two-paired

faces has the same form, the field distribution in the normal direction of the unfolded

line can be described effectively by the field distribution inside an equivalent single strip

with a finite thickness. Consequently, the given transmission line can be approximately

transformed into the equivalent single strip having the equivalent width and thickness

which are associated with the same geometric factor and the effective field distribution

inside the conductors. Now, using the equivalent single strip of uniform surface

current distribution, the internal impedance can be readily obtained and then, the

propagation characteristics can be calculated from circuit model of the transmission

line[201.
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4.3. Equivalent single strip

In previous section, we introduced an equivalent single strip of the same

internal impedance as the original transmission line through physical observation of the

field penetration. The surface current on the equivalent strip is assumed to be uniform

horizontally, but not vertically. The equivalent strip has the same conducting material

as the original line while the width and thickness of the equivalent strip can be obtained

independently of the conducting material used. The non-uniform distribution of the

surface current of the transmission line is approximately expressed using the effective

uniform current distribution on the equivalent width (We). The field distribution inside

the conductor is also represented approximately using the effective thickness (te) of the

equivalent strip. In order to obtain the width and the thickness of the equivalent strip,

we consider the two completely different cases of shallow and complete penetrations.

4.3.1. Calculation of the equivalent width

First, the equivalent width (We) can be calculated, at a very shallow penetration,

by equating the distributed internal impedance of the original line to that of the

equivalent strip. In previous chapter, it is shown that the internal impedance of a

transmission line can be calculated using the incremental inductance rule, if the

penetration depth (8, X) into the conductor is very shallow compared to the conductor

thickness (t), or (6, X) / t << 1. Specifically, it is expressed as a simple form of Zi =

Zs G (f2/m) as shown in (3.4), where Zs is the surface impedance (0/square) of the

conductor used and G is the geometric factor in dimension of m-1. For instance, the Zs

is (1 +j)/o or l/~1k for normal conductors or superconductors, respectively. From the
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incremental inductance rule, the G can be expressed in terms of the incremental

inductance associated with the penetration of magnetic flux into the conductor as shown

in (3.5). As an example, G = 2/(strip width) for a very wide microstrip line[5]. The

factor G depends only on the cross-sectional geometry of the transmission line with

perfect conductor.

Under this condition of shallow field penetration, we also apply the incremental

inductance rule to the equivalent strip. Since the current distribution is assumed to be

uniform on the equivalent strip, the distributed internal impedance is just the surface

impedance divided by the equivalent strip width. Then,

Zi = Zs/We ( 2/m) (4.1)

where We is the equivalent width and Zs is the surface impedance of the conductor used

in the original line. Therefore, by equating (3.4) and (4.1), we can obtain the

equivalent width at the shallow penetration as

We = I/G (m) (4.2)

The W, obtained from the incremental inductance rule is only structure-dependent and

free from the conducting material used.

4.3.2. Calculation of the equivalent thickness

Now, if the field penetrates deep into the conductor, the distributed internal

impedance will also depend on the strip thickness. However, if the current distribution

on the surface of the transmission line can be assumed to be almost unchanged, e.g., in

the case of quasi-TEM transmission line, we can still use the equivalent width (We)

calculated above and include the field penetration effect into the conductor thickness (t)
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of the equivalent strip. The equivalent thickness (te) can be obtained by equating both

internal impedances in the case of uniform current distribution at complete penetration.

At the uniform distribution of current, the distributed internal impedance of the original

line can be simply expressed as

Zi = 1/(CrA) (4.3)

where A is the effective cross-section of the original structure at the uniform current

distribution. For instance, A is just the cross-section (Wt) of the microstrip conductor

because of the infinite ground plane. At the same complete penetration, the equivalent

strip has the internal impedance as follows

Zi = 1 / ( YWete) (4.4)

Then, using (4.3) and (4.4), we can find the equivalent thickness (te) as

te = A/We = AG (4.5)

Here, We and te depend only on the cross-sectional geometry of the original

transmission line since G and A can be calculated from the cross-sectional geometry.

Therefore, an equivalent strip obtained from a given geometry of the transmission line

can be used approximately for any conducting material and the penetration depth by

simply substituting the strip material.

4.4. Calculation of the distributed internal impedance at any penetration

Now, using the equivalent strip obtained from the cross-sectional geometry,

and the conductivity of a given transmission line, we can calculate the overall

distributed internal impedance at any field penetration. For the equivalent strip with the

laterally uniform current distribution, the overall distributed internal impedance can be
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calculated using the equivalent strip width (We) and the surface impedance (Z) of a flat

plane conductor with finite thickness shown in (2.15). The surface impedance can be

explained based on the total longitudinal current and the longitudinal electric field on the

strip surface. The longitudinal current distribution in the vertical direction of the strip is

subject to the boundary conditions at the two strip surfaces. From these conditions, the

longitudinal current (I) integrated through the strip thickness can be obtained in terms of

the longitudinal electric field (E0) on the strip surface. Therefore, the ratio (Er/I)

becomes the surface impedance (Z') in (2.15).

Since the laterally uniform current of the equivalent strip extends over the finite

width We (= 1/G), the distributed internal impedance (Zi) of the equivalent strip
t t

becomes ZWe (= Z, G) by replacing the surface impedance in (4.1) with (2.15).

Finally, for a planar quasi-TEM transmission line with finite conductor thickness, the

distributed internal impedance at any field penetration can be approximately calculated

through the equivalent strip as

Zi = R+jcL i = Z/We = Z s Gcoth[tGA] (fm) (4.6)

The usefulness of this method comes from very simple calculations of G and A

used in (4.6). Here, G and A of a transmission line can be calculated using the

empirical formulas and from the actual cross-section of the line, respectively. Also, Z.

and t can be easily obained from the conductivity of the conducting material used.

Therefore, all the calculations consist only of simple calculations of several formulas.

This method can also be applied to many quasi-TEM transmission lines, i.e..

microstrip, coplanar waveguide, coplanar strip, and so forth.
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4.5. Calculation of the propagation characteristics

Propagation characteristics (i.e. attenuation, effective index, and characteristic

impedance) of the original transTmission line can be readily calculated from a circuit

model of transmission line[20] shown in Fig. 4.2. In the model, the distributed

resistance (R) and internal inductance (Li) calculated from (4.6) are added in series to

the external inductance (Lo) of the transmission line, while the shunt capacitance (C)

almost remains constant for the field penetration. The conductance due to the dielectric

loss is also incorporated through the calculation of effective loss ta.,gentl6],[21].

Then, we can use general formulas of the circuit model to calculate the propagation

characteristics.

', R L L Lo

----------------------------------------------

Zi

G C

Fig. 4. 2. Circuit model of a transmission line including

the internal impedance due to field penetration



Chapter 5

Calculated Results for Normal-state and Superconducting Microstrip

Lines and a Normal-state Coplanar Waveguide

5.1. Introduction

In order to verify the proposed phenomenological loss equivalence method, the

method is applied to microstrip lines using a copper conductor and a high-Tc

superconductor and compared the calculated data with published data. Since there is no

published data on thin coplanar waveguide and coplanar strip at deep penetration,

another comparison is performed with experimental data measured for very thin

coplanar waveguide. Through the comparisons in the wide ranges of frequency and

geometrical dimensions, we confirmed the proposed phenomenological loss

equivalence method is valid and very accurate for quasi-TEM transmission lines in a

wide range of field penetration.

5.2. Calculated results for a copper microstrip at 77 K

For the copper microstrip line shown in Fig.5.1, many transmission

characteristics were calculated using the phenomenological loss equivalence method

(PEM) in a wide frequency range and for a wide range of geometrical dimensions. In

Fig.5.2, the results are compared with the published data calculated by the finite

element method (FEM)[51.

35
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t W/2

E r= 3.5 h =W

a 450 (S/pgm) gW/2

Fig. 5. 1. Copper microstrip line at 77 K with different strip

widths ( 2, 5, and 10 trn)

One set of the PEM data (PEM- 1 in Fig. 5.2) are calculated by directly applying

the method to the microstrip based on the geometric factor derived in Section 3.4.1.

Note that the microstrip used in the FEM analysis[5] has the strip conductor embedded

in the infinitely thick dielectric polyimide, while in this PEM calculation we consider a

real situation of the strip conductor lying just on top of the finite dielectric. Therefore,

the phase velocities of the FEM data at high frequency approach the velocity of light in

the dielectric medium and are higher than those calculated from the empirical formulas.

In order to compare the PEM data with the FEM data in a same situation and verify the

PEM itself, another set of PEM data (PEM-2 in Fig. 5.2) was generated based on the

effective indices mentioned above.

As shown in Fig. 5.2, all the PEM data of the second set are in excellent

agreement with the FEM data in wide ranges of frequency and geometrical dimension.
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1000

-~100

10SIO

.01 .1 1 10

Frequency (GHz)

(e)

PEM-1 PEM-2 FEM
W= 2 m -
W, 5pm - _

W =10 prm --

Fig. 5. 2. (a) Distributed resistance, (b) Attenuation, (c) Phase velocity,

(d) Real and (e) Imaginary parts of the characteristic impedance or" the

copper microstrip line, shown in Fig. 5. 1, for different strip widths .t

77K. PEM-1 and PEM-2 show PEM data calculated respectively usin1g

the empirical formulas, and the geometric factors and effective indices

obtained from the FEM data at high frequency.
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All of the PEM- 1 data agree well with the FEM data except the effective indices due to

the different dielectric thicknesses considered. This indicates the validity of the PEM

for the characterization of quasi-TEM transmission lines in a wide range of field

penetration.

There are two deflection points for each attenuation curve shown in Fig. 5.2(b).

The deflection at upper frequency is associated with the saturation of the field

penetration due to the finite strip thickness. Another deflection comes out at the lower

frequency where the total reactance(j c [ L + Li ]) and the resistance (R) become about

the same. A wide and flat attenuation region is in between the two frequencies and can

be shifted to the lower frequency by increasing the conductivity or the cross-section of

the line. These deflection points will exist in all planar quasi-TEM transmission lines

with normal conductors.

5.3. Calculated results for a superconducting microstrip line

A thin microstrip line having the geometry of Fig. 5.3 is chosen for an

application of the PEM to superconducting line. In reference [22], the Monte-Carlo

method (M.C.) is used to analyze the microstrip line with aluminum or high-Tc

superconductor (Ba-Y-Cu-O). The high-Tc superconductor is described using the two-

fluid model in both this PEM and the M.C., although the validity of this model in high-

Tc material is uncertain. It is used here only to make a comparison of the PEM data

with the M.C. data.

Using the PEM, the attenuations and the phase velocities are calculated and

compared with the data from the M.C. method in Fig.5.4. They are in very good

agreement in a wide range of frequency and show the validity of the PEM for a
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=---- 2 -- m-.--

-r= 3.5 h= 1 pim

Tc=92.5 (K)
IIigh-T c superconductor T,0 0.14 (K n)

(Ba-Y-Cu-O)
a n at Tc = 0.5 (S/m)

or Aluminum at 77 K =150 (S/ptm)

Fig. 5. 3. Microstrip line using high-Tc superconductor or aluminum

superconducting line. The superconducting line shows very small attenuation and

virtually non-dispersive transmission, while the aluminum line is very lossy at high

frequency and dispersive in low frequency region. Although the superconducting line

has the attenuation proportional to the square of frequency, it is almost ideal for

transmission except at very high frequency close to the bandgap frequency.

Since the penetration depth of the superconductor at 77K (=0.24tm) is not so

deep compared to the microstrip thickness (=0.5pim), the penetration effect cannot be

seen clearly in this geometry. The penetration effect rather can be seen clearly in the

aluminum line as well as in the previous copper line, because their skin depths are

frequency-dependent and hence, very deep at low frequency. Therefore, the PEM will
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Fig. 5. 4. (a) Attenuation and (b) Phase velocity of the superconducting 111d

aluminum microstrip lines at 77K shown in Fig. 5. 3.
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be more effective for very thin and narrow superconducting lines. For those small

lines, the line thicknesses are not thick enough to apply the incremental inductance

method and a simple modification of the surface impedance[1J,[231,[24] will be

inaccurate due to the lateral surface current spreading at very deep field penetration.

5.4. Calculated results for a thin coplanar waveguide

In order to compare PEM data with experimental data for coplanar waveguide,

we have applied the PEM to the thin coplanar waveguide shown in Fig. 5.5. The PEM

data are obtained using the geometric factor in equation (3.16) and the internal

impedance in equation (4.6). The thin (1.25 /am) coplanar waveguide is on a very thick

(1270 jim) quartz substrate in which the dielectric loss and the thickness effect are

negligible. Total length of the coplanar waveguide is 9.5 mm (one end is shorted using

silver paste and S1 1 is measured through the other end). Since silver is used for the

conductor, the skin depth is about 2 gm at 1 GHz. Therefore, the field penetration

effect can be seen clearly in a wide frequency range of the measured data (from 1 to 40

GHz).

As shown in Fig.5.6(a), the PEM data are very close to the measured data in the

wide frequency range. This means the PEM is valid for a coplanar waveguide in wide

range of field penetration because the skin depth depends on the frequency. A slight

deviation from the measured data at lower frequency is considered due to calibration

errors or the inaccurate thickness and conductivity used for the PEM calculation.

Radiation and substrate mode generation at input discontinuity can also result in the

slight deviations at dips in Fig.5.6(a). Calculated distributed resistance and conductor

loss are shown in Fig.5.6(b) in which the resistance and the attenuation become
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saturate below 10 GHz. At the frequency the skin depth is about half of the conductor

thickness and the penetration effect becomes important. Although the calculated data

are not shown below I GHz, the flat attenuation zone mentioned in Section 5.2 also

exists around I GHz in this coplanar waveguide.

II I

Silver ( c =61.7 S/pim) -S = 10 j.tm.

W 7 ji.tm

t] ~.26 pim

Quartz substrate ( Er = 3.78) h 1270 gm

Total length = 9.5 mm
(terminated by short)

Fig. 5. 5. Thin coplanar waveguide on a quartz substrate
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Fig. 5. 6. (a) S ~and (b) Distributed resistance and attenuation of

the coplanar waveguide with short termination shown in Fig. 5.5.



Chapter 6

Conclusion

For very thin normal-state or superconducting transmission line, conductor loss

must be characterized in a wide field-penetration range by taking the field penetration

effect into consideration. Full-wave analyses of the conductor loss however, are not

appropriate for computer-aided-design implementation since they require extensive

formulations and numerical computations in order to consider the field penetration

effect.

A phenomenological loss equivalence method is proposed to characterize the

conductor loss of a planar quasi-TEM transmission line made of a normal or super-

conductor in a wide range of field penetration. This phenomenological loss equivalence

method is based on the observation of the current distribution changing as the quasi-

static field of a quasi-TEM transmission line penetrates more into the conductor. In this

method, a planar quasi-TEM transmission line, having a finite conductor thickness on

the order of the penetration depth, is approximated by an equivalent single strip which

has the same conductor loss as the transmission line. The geometry of the equivalent

strip is obtained only from the cross-sectional geometry of the original line, while the

conducting material is the same as that of the original line. Since the geometry of the

equivalent strip obtained is material-independent, it can be used for any normal-state or

superconducting line by substituting the conducting material. Therefore, the distributed

46
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internal impedance of the transmission line can be approximately calculated from the

equivalent single strip and all the propagation characteristics can be obtained by

incorporating the internal impedance into the circuit model of the transmission line.

In order to verify the method, we applied the method to microstrip lines made of

thin copper and high-Tc superconductor as well as a coplanar waveguide made of

silver. The calculated PEM data show very good agreement with published data ( by

Finite Element Method and Monte-Carlo Method ) and experimental data in wide ranges

of field penetration and geometrical dimensions. Since the method consists of simple

calculations of several formulas obtained through physical observation of field

penetration, it can be readily applied to the computer-aided-design implementation.
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